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� Abstract
The quantitative analysis of molecule interactions in bioimaging is key for understand-
ing the molecular orchestration of cellular processes and is generally achieved through
the study of the spatial colocalization between the different populations of molecules.
Colocalization methods are traditionally divided into pixel-based methods that mea-
sure global correlation coefficients from the overlap between pixel intensities in differ-
ent color channels, and object-based methods that first segment molecule spots and
then analyze their spatial distributions with second-order statistics. Here, we present a
review of such colocalization methods and give a quantitative comparison of their rela-
tive merits in different types of biological applications and contexts. We show on syn-
thetic and biological images that object-based methods are more robust statistically
than pixel-based methods, and allow moreover to quantify accurately the number of
colocalized molecules. VC 2015 International Society for Advancement of Cytometry

� Key terms
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endocytosis

QUANTITATIVE measurement of molecules interactions in cellular biology is a key

step toward the understanding of molecular processes orchestration, such as endocy-

tosis (1), and their hijacking by bacteria (2) and viruses (3). In fluorescence micros-

copy, the measurement of molecule interactions can be monitored through several

techniques, like F€orster resonance energy transfer (FRET) (4) or Fluorescence Cross-

Correlation Spectroscopy (FCCS) (5). However, FRET cannot be used when interact-

ing molecules are too large, when they are part of a macromolecular complex (indi-

rect interaction), or when molecules only colocalize spatially in cellular

microdomains such as membrane domains or intracellular organelles (endosomes,

. . .; see Fig. 1). In addition, FCCS cannot be applied when one of the molecules is

docked or immobilized. Last but not least, these methods are difficult to use for the

analysis of the interaction between more than two different molecule populations (6)

and cannot benefit from multispectral color imaging of multiple chromophores

attached to different molecules (7). For all these reasons, the analysis of molecule

interactions is performed generally through the quantification of their spatial coloc-

alization in the microscope’s field of view (FOV; (8)).

Classical colocalization methods are based on the analysis of the pixel-wise cor-

relation between the signals emitted in two or more color channels corresponding to

the fluorescence wavelength of the labels (see Fig. 2). These pixel-based methods

have given rise to a large number of different correlation coefficients (8), the mostly

used being Pearson’s and Manders’ coefficients (8–10). More recently, object-based

methods, which segment the individual molecules (objects), before analyzing their

spatial distribution, have been introduced (11–16; see Fig. 2). In the latter case, dif-

ferent statistics are used for spatial analysis. Most used statistics are second-order sta-

tistics and are based on distances between neighbor points. In the first part of this
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review, we will present in detail the different pixel- and

object-based methods that have been developed over the years.

For each of these methods, we will discuss whether they are

able to handle the two following important technical issues:

1. Statistical Robustness: Is the Observed Colocalization

Significant? Even for a random molecule spatial distribu-

tion, spatial colocalization can occur by chance. These

fortuitous colocalization events increase with molecule

density in the microscope FOV, and it is therefore impor-

tant to test statistically whether the measured colocaliza-

tion is statistically relevant. We highlight that the null

hypothesis of molecule” non-colocalization” is not easy to

define. Thus, in practice, the null hypothesis of molecule

random distribution is mainly used, even if this condition

is stronger than just” non-colocalization”. Indeed, mole-

cules can be independently distributed without being ran-

domly distributed.

2. Quantification Accuracy: Can the Percentage of Colocal-

ized Molecules and Their Distances be Inferred from the

Colocalization Method? The number of colocalized mole-

cules gives important information about the interaction

strength and stoichiometry, and the colocalization distance

reveals the nature of the interaction [direct, indirect, close-

by in the same organelle (see Fig. 1)]. However, as we will

see hereafter, the quantitative interpretation of the correla-

tion coefficients and spatial statistics is rarely straight-

forward, meaning that additional analysis is required to

extract quantitative information such as the number of

colocalized molecules, or their distance.

Following the detailed and critical presentation of mostly

used pixel-based and object-based methods, we will compare

the different methods on synthetic and biological images. For

this, we will first analyze how the main pixel-based and

object-based methods perform on synthetic images with dif-

ferent level of noise and (known) percentage of colocalization.

Then, we will use the different methods to measure the coloc-

alization at the cell membrane between two cargos that enter

Figure 1. Different molecule interactions. Molecule (green and

red dots) can interact directly at small distance �1210 nm, but

their size or their indirect interaction in large molecular com-

plexes (blue dots) lead to much larger interaction distances �102

100 nm. Colocalization analysis can also be used to assess mutual

presence of molecules in membrane microdomains or intracellu-

lar organelles. The resulting interaction distance can then reach

the organelle size �500 nm. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 2. Principles of colocalization analysis in fluorescence microscopy. A: Molecules are visualized in a dual-channel fluorescence

image. B: Images are de-noised and fluorescent spots corresponding to molecule signal are extracted automatically with wavelet detec-

tion method (22). C: In pixel-based methods, molecule colocalization is analyzed by measuring the overlap between de-noised signal with

correlation coefficients, such as the Pearson (10) and Manders (9) coefficients. D: In object-based methods, molecule spots are first seg-

mented and represented as points through the coordinates of their center of mass in the FOV. Then, second-order statistics such as dis-

tance to nearest neighbor (42), or Ripley’s K function (43) are used to analyze point spatial distributions. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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the cell through endocytosis, the transferrin (Tf) and

interleukin-2 receptor (IL-2R), with intracellular molecules

that are implicated in different endocytic pathways.

MATERIALS AND METHODS

Experimental Protocol, TIRF Microscopy

Hep2b cells expressing IL-2R (17) were grown in

DMEM containing 10% FCS and 1 mg/mL of geneticin

(Gibco). We used clathrin-light chain (CLC) and caveolin

1 all tagged to GFP (18,19) to transfect them into Hep2b
cells (19). To image the two cargos, 1 3 105 Hep2b cells

transfected with either CLC-GFP or Cav1-GFP and plated

on MatTek plates, were incubated 2 min with either Tf-

Cy3 or anti-IL-2Rb-Cy3 in a TIRF medium (25 mM

Hepes, 135 mM NaCl, 5 mM KCl, 1.8 mM CaCl2,

0.4 mM MgCl2, 4.5 g/L glucose, pH 7.4, and 0.5% BSA)

at 37�C, washed and fixed (19). Experiments were per-

formed using a TIRF microscope (IX81F-3, Olympus)

equipped with a 100x NA 1.45 Plan Apo TIRFM Objec-

tive (Olympus) and fully controlled by CellM (Olympus).

Two solid-state laser lines (488 and 561 nm; Olympus)

were coupled to a TIRF condenser through two optical

fibers. The two color channels were simultaneously

acquired through a Dual View beam splitter (Optical

Insights), to separate the two emission signals to two

sides of the camera, using a 565 nm dichroic mirror and

525/50 and 605/55 nm emission filters. Images were col-

lected using an IxonEM1 Camera (DU885, Andor).

Synthetic Image Generation and Image Analysis

We used a Mixed Poisson-Gaussian model to generate

synthetic fluorescent images (see chapter 1 of Ref. 20). In this

model, the intensity I ½x; y� at pixel location ½x; y� is equal to I ½
x; y� ¼ gain � U ½x; y�1Nðx; yÞ where U is a random Poisson

variable and N an additive white Gaussian noise with mean 0

and standard deviation equal to 3. The mean k½x; y� of the

Poisson variable U varies spatially: k½x; y� ¼ P½x; y�1B;P½x; y�
being the sum of the intensity of the particles generated in ½x;
y� and B 5 10 a constant background value. gain ¼ 1 is the

gain of the acquisition system. Finally, we assumed an additive

model for the intensity of the particles: P½x; y� ¼PN
i¼1 Pi½x; y�, where Pi½x; y� is the signal originating from the

ith particle in pixel ½x; y�. When a particle is significantly

smaller than the resolution of the microscope, its intensity

profile Pi is well represented by the Gaussian point spread

function (PSF) of the microscope (21) with a specific ampli-

tude Ai: Pi½x; y� ¼ Aie
2
ðx2x0

i
Þ21ðy2y0

i
Þ2

2r2
xy where ½x0

i ; y
0
i � is the coordi-

nate of the ith particle and rxy the standard deviation of the

2D Gaussian profile of the PSF. We sampled uniformly Ai

between 20 and 25 for each particle 1 � i � N .

In synthetic and biological images, we used a wavelet-

based detection method (22), implemented in the plugin Spot

detector in the Icy platform (23) (http://icy.bioimageanalysis.

org) to extract molecule signals that are statistically brighter

than background. Molecule position ½x; y� was then inferred

from centroids of detected spots.

PIXEL-BASED METHODS

Principle

The first quantitative methods were introduced in the 90’s

and were pixel-based (9,24–26). They are based on the compu-

tation of correlation coefficients between pixel intensities in the

different channels. In most studies, a preliminary de-noising of

the image is performed to remove noise from the correlation

analysis (see Fig. 2). Denoising can be based on hard threshold-

ing the image, keeping pixels with intensity above given thresh-

old, or it can use more elaborated techniques such as wavelet

thresholding (22). Hereafter, we present the principal correla-

tion coefficients that are used in pixel-based methods.

The first correlation coefficient to be used was the Pearson

coefficient R (24–26). Denoting I i
1 and I i

2 the intensities of pixel

1 � i � n in microscope channels 1 and 2, the mathematical

expression of the Pearson coefficient is R ¼ I1I2 2I1 I2

rðI1ÞrðI2Þ, where the

bar stands for the mean, and rðIjÞ, j 5 1, 2, is the standard devi-

ation of pixel intensities in each channel. Conceptually, Pearson’s

coefficient measures the part of the measured variations in one

channel that can be explained by variations in the other channel,

and it ranges between 21 and 1. The extreme values 21 and 1

indicate respectively perfect anti-correlation and correlation,

whereas R 5 0 means that channels are not correlated. The Pear-

son coefficient determines actually signal correlation, not coloc-

alization. Thus, the quantitative interpretation of intermediate

values of the Pearson’s coefficient is not easy. To tackle this issue,

van Steensel et al. proposed (24) to compare the coefficient with

the values that are obtained after a shift of dx pixels of the first

channel. Then, if the maximum value of R is obtained with no

shift dx ¼ 0, it means that that channels correlate, whereas if R

does not change with dx, or is minimal at dx ¼ 0, it indicates

that channels do not correlate, or are segregated.

The other correlation coefficients to be highly used are

Mander’s coefficients (9) that measure the amount of channel

1 (M1 coefficient) and channel 2 (M2 coefficient) signal that

colocalize with other channel: M1 ¼
Pn

i¼1
I i

1;colocPn

i¼1
I i

1

and M2 ¼
Pn

i¼1
I i

2;colocPn

i¼1
I i

2

, where
Pn

i¼1 I i
j;coloc, for j 5 1, 2, is the total intensity

of channel j pixels I i
j that colocalize with bright, denoised pix-

els of the other channel. Quantitative interpretation of Man-

der’s coefficients is much more straight forward than Pearson

coefficient. Indeed, Mj ¼ x% means that x% of channel j sig-

nal colocalize with signal in the other channel. In addition,

Mander’s coefficient allow to analyze channels separately.

Statistical Robustness

Partial colocalization between fluorescent spots can hap-

pen even for randomly distributed molecules, and conse-

quently, it is important to test statistically the significance of

computed correlation coefficients. For this, the first step is to

define the null hypothesis of the colocalization test, which is

in most studies, the random distribution of pixels in each

image channel (10,25,27). Then, the second step of the statis-

tical analysis is the determination of the level of significance

of the computed correlation coefficient. A simple method is
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based on multiple (M >> 1) pixel randomizations in the

FOV for each channel. Indeed, by computing the correlation

coefficient at each randomization (X(i), 1 � i � M ;X ¼
R;M1;M2 . . .) and by sorting the different computed values

(Xð1Þ � . . . � XðMÞ), one can then approximate the quantile

q12a at level 12a of the correlation coefficient under the null

hypothesis with X b 12að ÞMcð Þ, where b:c is the floor func-

tion. We highlight that pixel random distribution does not

correspond to molecule random distribution. Indeed, even for

randomly distributed molecules, pixels are not statistically

independent data points. Instead, they are autocorrelated

(each pixel is likely to have similar values to its neighboring

pixels), and the primary source of autocorrelation is the

point- spread function of the imaging system, which spreads

the signal of point sources to round shape pixel aggregates

(spots; 28). This technical issue is discussed in (10), where

Costes et al. propose to randomize pixels block, block size

being approximately equal to molecule spot size, to simulate

molecule randomization. However, block scrambling never-

theless reduces pixel autocorrelation compared to natural

images, leading to false colocalization detection in random

data (29). Using synthetic fluorescence images with randomly

Figure 3. Empirical cumulative density function (CDF) of Pearson and Manders correlation coefficients. Dual-color synthetic images con-

taining n1 ¼ n2 ¼ 100 spots are generated with a Poisson-Gaussian model (see Material and Methods). For the computation of Manders

coefficients, fluorescent spots are first automatically segmented with a wavelet-based algorithm (22). Empirical CDF of Pearson and Man-

ders correlation coefficients are then obtained with either pixel or spot randomization (N 5 500 Monte-Carlo simulations). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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distributed spots instead of pixel scrambling, Ramirez et al.

demonstrated that the probability density functions (PDFs)

for Manders and Pearson correlation coefficients were signifi-

cantly different (Fig. 4 in Ref. 30). In particular, the variance

of the PDF obtained with spot scrambling increased with spot

randomization instead of pixel scrambling, leading to the con-

clusion that false positives were observed with pixel scram-

bling. We confirmed here these results by generating synthetic

images with n1 ¼ n2 ¼ 100 spots randomly distributed in a

256 3 256 pixels FOV (see Material and Methods), and com-

paring the cumulative density functions (CDFs) of Pearson

and Manders coefficients computed empirically with either

pixel or spot randomization (Fig. 3). We observed that CDFs

were significantly sharper with pixel randomization, and

reached significantly high values (>0.95) at points where

CDFs obtained with spot randomization are around 0.80

(with Poisson/Gaussian noise) or 0.65 (no noise) only. Thus,

we confirmed that pixel randomization leads to false positive

colocalization compared to spot randomization (29). Finally,

we underline that spot randomization is based on synthetic

images, and requires to define and estimate image model

parameters (noise, intensity, number of spots; (6,30,31)).

The major drawback of spot randomization methods is

the robust estimation of synthetic image parameters (number

and shape of spots, noise . . .). In addition, the computational

load of pixel and spot randomization can hinder its use on

large images and time-lapse imaging. Li et al. tackled partially

this latter issue by proposing a statistical test that does not

need pixel randomization (27). For this, they first introduced

the Pearson-derived, intensity-correlation coefficient
~R ¼ rðI1ÞrðI2ÞR ¼ I1I22I1 I2 , and proposed to use the inten-

sity correlation quotient (ICQ) ICQ ¼ 1
n

Pn
i¼1 1ð~Ri

> 0Þ20:5

as a test statistics of pixel random distribution. Indeed, they

claim that ICQ is centered around 0 when pixels are randomly

distributed, whereas signal colocalization shifts the ICQ to

positive values (0 < ICQ < 0:5). Thus, using the fact that the

probability Pr ICQ > 0f g ¼ 0:5 under the null hypothesis of

pixel random distribution, they measure the significance of

the empirical ICQ by using a nonparametric sign test. We

highlight that the hypothesis that Pr ICQ > 0f g ¼ 0:5 when

pixels are randomly distributed holds when the pixel intensity

distribution is symmetric (skewness 5 0), which is not the

case, for example, when signal intensity is low.

Finally, when m multiple images are acquired in same

experimental conditions, McDonald and Dunn proposed to

use a one sample Student’s t test (m22 degrees of freedom) of

whether the mean Pearson coefficient �R ¼ 1
m

Pp¼m
p¼1 Rp is stat-

istically > 0 (28). This solves the technical issue of pixel auto-

correlation as whole images are used for the test. In addition,

McDonald and Dunn confirmed the statistical power of the t

test on synthetic data (28).

Quantitative Interpretation

The quantitative interpretation of pixel correlation coeffi-

cients is very difficult, representing the major drawback of

pixel-based methods. Indeed, partial overlap of molecule spot

can appear by chance, particularly when spots are large and

the density of molecules in the FOV is high. Conversely, it is

rare that spots of colocalized molecules overlap perfectly (see

Fig. 2), due to the variability of spot shapes and the nonzero

distance between colocalized molecules, which results from

the sum of the physical interaction distance (see Fig. 1), the

molecule localization error (32) and potential mis-alignment

of microscope channels. In addition, the physical distance

between colocalized molecules is rarely zero and the overlap

of their spots is drastically decreased when the spot size is

reduced with super-resolution techniques such as structured

illumination (33) or STED microscopy (34). For all these rea-

sons, overlap percentage obtained with Manders correlation

coefficients (9) is hardly convertible into molecule colocaliza-

tion. Intensity cross-correlation spectroscopy (ICCS) tackled

partially this issue by estimating the percentage pk of mole-

cules k that colocalize with other molecules (k 5 1, 2) from of

Pearson-based ratio pk 	 r
rk

, with r ¼ rðI1ÞrðI2Þ
I1 I2

R and rk ¼ r2ðIkÞ
Ik

2

R (35,36). When comparing colocalization methods with syn-

thetic images, we used the previous formula for pk, but we

highlight that pk computation accuracy can be improved by

fitting the spatial variations (u, v) of the ratio r
rk
ðu; vÞ with a

Gaussian distribution: r
rk
ðu; vÞ ¼ r

rk
ð0; 0Þe2u21v2

2r2 1a1, where

a1 is a constant, and by setting pk 	 r
rk
ð0; 0Þ (35,36).

Finally, the mean distance between colocalized spots is

hardly accessible from pixel correlation coefficients. In addition,

Pixel-based methods are not compatible with super-resolution

localization microscopy [PALM (37) or STORM (38)], which

infer directly the molecule position from sequential activation

of multiple photo-switchable fluorophores attached to mole-

cules. These super-resolution advances explain partially the

recent development of object-based methods, which are based

on the spatial analysis of molecule localizations.

OBJECT-BASED METHODS

Principle

In object-based methods, the molecules (objects) are first

segmented and are then represented as points through coordi-

nates of their mass center in the delimited FOV (see Fig. 4A).

These methods do not depend on spot size and are particularly

well-suited for super-resolution localization microscopy that

infer directly molecule positions from multiple photoactivable

fluorophores (37,38). However, in all microscopes, these meth-

ods rise a first technical issue, which consists in detecting and

segmenting molecule spots. This can be achieved with wavelet

based methods (22) and point-spread function fitting (39),

which have demonstrated their robustness even in very noisy

images (40). Then, the mathematical framework of Marked

Point Process (41), where the mark is the type (color) of point

(molecule), is particularly adapted to analyze the relations

between the spatial distributions of the two populations (see

Fig. 4B). Indeed, the first statistical question that arises is

whether points are randomly distributed (42,43), or equiva-

lently, if the observed point distributions can be modeled by a

uniform Poisson point process. As a matter of fact, a randomly
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distributed point process can fall in the neighborhood of

another point process, leading to fortuitous colocalization

events. It is therefore important to measure the statistical rele-

vance of the colocalization occurrence. The second major issue

when analyzing Marked Point Processes is the robust quantifi-

cation of the percentage and the distance of point colocalization

from their spatial distribution.

Analysis of Marked Point Processes is mostly based on

second-order, descriptive statistics which try to capture

information about the distance between points and their

neighbors. In that context, the tools of reference are the dis-

tance to nearest-neighbor (42), and Ripley’s K function (43)

and its derivative, the pair correlation function (44,45; see Fig.

4C). In nearest-neighbor based method, the test statistic S is

based on distance di of each point of the first population A1

(n1 points) to nearest-neighbor in the second A2 population

(n2 points) (see Fig. 4C). In its simplest form, test statistic S is

the mean distance to nearest neighbors S ¼ 1
n1

Pn1

i¼1 di (42),

Figure 4. Object-based statistical analysis. A: Punctuated fluorescent molecules are segmented automatically in the different color chan-

nels, and are represented as points through the coordinates of their center of mass in the FOV. B: Mathematical formalism of Marked-

Point-Processes (41) is used to represent the molecule positions in the delimited FOV, the mark being the color of the molecule. C:

Second-order statistics S(r) such as the the distance to nearest-neighbor (42) and the Ripley’s K function (43) allow to analyze the spatial

distribution of marked points. In Ripley-based analysis, a boundary correction bði; j; rÞ prevents bias in S(r) due to neighbor underestima-

tion at larger values of r. D: Colocalization is statistically assessed through the comparison of the computed second-order statistics S(r)

(black solid line) with its critical quantiles q12aðrÞ at level 12a under the null hypothesis of point random distribution (red dashed line). The

percentage of colocalization, and the distance between colocalized points is inferred from parametrical fitting of S(r) (blue dashed line).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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but more complex statistics, that enable multidistance analy-

sis, have been introduced over years. In particular, the nearest-

neighbor function SðrÞ ¼ 1
n1

Pn1

i¼1 1ðdi < rÞ allows to test

whether points colocalize at distances below the parameter r

(14,46). In Ripley-based analysis, the test statistic is the Rip-

ley’s K function, or its derivative the pair correlation function.

For a distance parameter r and delimited FOV X, the standard

expression of the Ripley’s K function is SðrÞ ¼ jXj
n1n2Pn1

i¼1

Pn2

j¼1 1 dij < r
� �

bði; j; rÞ where jXj is the area or the vol-

ume of X, dij the euclidian distance between point i of first

population A1 and point j of second population A2, and bði; j;
rÞ is a boundary correction term that prevents a bias in S(r)

due to neighbor underestimation at larger values of r (see Fig.

4C). Indeed, under the assumption of A2 random distribu-

tion, points in A1 that are close to the FOV boundary will

have less neighbors than the others (typically, a point located

on, or very close to, the boundary will have, on average, half

of the neighbors than a point located far from the boundary).

Surprisingly, boundary correction is not used in nearest-

neighbor approach, while many different forms of corrections

have been proposed for Ripley-based statistics. In particular,

the Ripley’s correction is one of the most standard corrections

in spatial analysis and is given by bði; j; rÞ ¼
jcði; dijÞj=jcði; dijÞ \ Xj, where cði; dijÞ is the circle (sphere)

centered at i with radius dij. We highlight that for a point i

located at the boundary, bði; j; rÞ 	 2.

Statistical Robustness

Statistical test of molecule (point) colocalization is

mostly achieved through the comparison of the second-order

statistics S(r) with the critical quantiles q12aðrÞ at level 12a
under the null hypothesis of molecule random distribution in

the FOV (see Fig. 4D). We note that comparison between S(r)

and q12aðrÞ at several distances r allows to determine the dis-

tances where the Ripley- or Nearest-Neighbor-based statistics

S(r) exit the critical envelope q12aðrÞ, indicating at which dis-

tances points co-localize statistically (see Fig. 4D).

In the theoretical case when the FOV is not limited, the

probability density function of most second-order statistics

has been characterized under the null hypothesis of A2 mole-

cule random distribution. For example, the null distribution

of the nearest neighbor function SðrÞ ¼ 1
n1

Pn1

i¼1 1ðdi < rÞ is

equal to 12e
2

n2
jXjBðrÞ, where B(r) is the area of the ball with

radius r, that is BðrÞ ¼ pr2 in two dimensions and BðrÞ ¼ 4
3
p

r3 in three dimensions. Conversely, in delimited FOVs, there

are very few statistical results as it is difficult to account for

the contour geometry. Indeed, the underestimation of neigh-

bors for points close to the FOV boundary, even with correc-

tions, modifies the probabilistic distribution of Ripley-based

or nearest-neigbors statistics, and no, or only few analytical

characterization of these geometry-constrained laws have been

proposed (47–49). Consequently, the quantiles of descriptive

statistics under the null hypothesis of point random distribu-

tion, that are needed to assess statistically whether point

colocalize or not, are computed with Monte-Carlo simula-

tions in each FOV (11–14). Even if it answers the need for sta-

tistical robustness of the method, it induces a high

computational load, and requires calibration. Recently, we

tackled partially this issue in (15) by characterizing the proba-

bility distribution of the Ripley’s K function under the null

hypothesis, and as a function of the geometry of the FOV.

We demonstrated that the K function is asymptotically nor-

mal SðrÞ � N lðrÞ;rðrÞð Þ for n1n2 >> 1, and we computed

that, using the Ripley’s boundary correction, lðrÞ ¼ BðrÞ, and

that r2ðrÞ ¼ jXj
n2

1
n2
ð
Pn1

i¼1 bi1
P

k 6¼i AikÞ2 BðrÞ2
n2

, where bi is func-

tion of the distance ji2@Xj of each point i to the boundary

@X, and Aik is the area of the intersection of balls centered at

i 6¼ k. Critical quantiles q12aðrÞ of S(r) are then given by

q12aðrÞ ¼ lðrÞ1rðrÞz12a, where z12a is the quantile of the

standard normal law Nð0; 1Þ.
Finally, we note that testing separately S(r) against q12aðrÞ

for different r does not provide the exact probability that the

observed points interact or equivalently, that they are not the

realizations of random Poisson processes. Indeed, second-order

statistics (Nearest-Neighbor or Ripley’s K functions) SðriÞ and

SðrjÞ, for 1 � i 6¼ j � N, are correlated random variables, and

a statistical test that accounts globally for the multidistance

information SðriÞ, for r1 < . . . < ri < . . . < rN is required. To

elaborate such a statistical test, an essential prerequisite is to

construct a summary statistics that accounts for the correlations

at different distances and recapitulates the multidistance infor-

mation in a single statistics. In the context of nearest-neighbor

methods, Sbalzarini and coworkers introduced the distance

counts T ¼ T1; . . . ;TLð Þt , where Tj ¼
Pn1

i¼1 1 rj � di < rj11

� �
.

Then, they proposed the summary test statistic

U ¼ E0 Tð Þ2Tð Þt Cov0 Tð Þ21
E0 Tð Þ2Tð Þ, where E0 Tð Þ and Co

v0 are the empirical mean and variance of T obtained with sim-

ulations. We were not able to exhibit similar summary statistics

for Ripley-based statistics. However, for a single population of

molecules, we highlight that Lang and Marcon computed ana-

lytically the covariance of Ripley’s K function at different dis-

tances in the unit square, and using the normal convergence of

the K function, they proposed to use a v2 global test of mole-

cule positions randomness (47). The computation of the K

function covariance for two populations of points and any

FOV, which can be achieved with simulations in a first step,

would allow to extend v2 tests to colocalization analysis.

Quantitative Interpretation

A second important issue when analyzing second-order

statistics is the quantification of detected spatial colocaliza-

tion. In the field of bioimaging, among the relatively few

methods that have been proposed an important contribution

was made by I.F. Sbalzarini and coworkers (14), who proposed

to infer point interaction properties from parametric models

of spatial interaction (see Fig. 4D). They modeled the interac-

tion between points 1 � i � n1 and 1 � j � n2 with a Gibbs

process whose probability density p(X, Y) is related to point

positions xi and yj through the Boltzmann distribution

pðX ;Y Þ / expð2
Pn1

i¼1

Pn2

j¼1 Uðxi; yjÞÞ, where Uðxi; yjÞÞ is the

interacting potential between points xi and yj . Then, assum-

ing that only nearest-neigbors can interact, they parametrized

Original Article

574 Statistical Analysis of Molecule Colocalization in Bioimaging



Uðxi; yjÞ ¼ �f
dij2a

b

� �
where � is the interaction strength (�5 0

corresponds to noninteracting particles), b the interaction

length scale and a a shift along the distance axis of the interac-

tion potential. Finally, based on the observed distances D

¼ dið Þi¼1::n1
of A1 points to nearest neighbors, they estimated

the interaction parameters �̂; b̂ and â thanks to maximum-

likelihood estimation. Importantly, they also tested the statis-

tical relevance of the estimated parameters. Indeed, �̂ > 0

does not imply necessarily that there are true interactions

between points (� > 0). Thus, using Monte-Carlo re-sampling

in the FOV, they assessed the statistical relevance of the com-

puted parameters by estimating the maximum values that

parameters can reach with given probability a under the null

hypothesis of no interaction.

To the best of our knowledge, there is no such parametric

fitting method for the Ripley’s K function. Indeed, many

models have been developed over years to analyze the cluster-

ing of a single population of points but not for the colocaliza-

tion of two populations of points. In classical single

population models, parent points are distributed in the FOV

and then, offspring points are distributed around parents to

form clusters. Cluster models then specify the (random) num-

ber of offsprings per parent, and the spatial distributions of

parents and offsprings. For example, in the Mat�ern cluster

process, parents are randomly distributed (homogeneous

Poisson process) and have a Poisson number of offsprings,

that are independently and uniformly distributed in a disc of

radius r centered around the parent (50). Another example is

given by the Thomas process, where the spatial distribution of

offsprings around parents is Gaussian. However, only few

models accounting for the interaction distance dij between

two interacting point populations xi and yj have been

developed.

In this review, we adapted the Thomas process for two

populations and modeled the interaction distance between A1

and A2 points with a Gaussian distribution: dij � Nða; bÞ.
The Gaussian mean a results from the interaction distance and

potential mis-alignment between channels, and the standard

deviation b models the possible variations of the interaction

distance and molecule localization errors (32). Assuming that

a percentage p2 of A2 points colocalize with A1 points, and

that the other ð12p2Þn2 A2 points are randomly distributed in

the FOV, we computed that E SðrÞjp2; a; bf g ¼
BðrÞ1p2

jXj
2n1

erf r2affiffi
2
p

b

� �
2erf 2r2affiffi

2
p

b

� �� �
, where erf is the error

function. We could then estimate p2, b, and a by fitting the

empirical S(r) with the theoretical mean curve E SðrÞjp2; a; bf g
(see Fig. 4D).

We finish by noting that previous methods are para-

metric, and thus are afflicted with the standard issues asso-

ciated with model embedding, such as choosing an adapted

and sufficiently general model, or checking the goodness of

fit in a robust way. Development of nonparametric methods

thus constitutes a promising research direction that would

allow to extract colocalization parameters without these

drawbacks.

COMPARING PIXEL- AND OBJECT-BASED METHODS ON

SYNTHETIC AND BIOLOGICAL IMAGES

Synthetic Images

We compared how pixel-based and object-based meth-

ods performed on synthetic fluorescence images with differ-

ent (known) percentage of molecule colocalization. We

generated the synthetic images by using a Mixed Poisson-

Gaussian model (see chapter 1 of Ref. 20 and Material and

Methods). We modeled molecule colocalization with a

Thomas process (see subsection “Quantitative inter-

pretation”), the colocalization distance following a Gaussian

distribution with mean a 5 0 or a 5 1 pixel and standard

deviation b 5 0.3. We then varied the percentage

p2 ¼ 0; 5; 10; 25; 50; and 75%, or p2 ¼ 100% of A2 molecules

(n2 ¼ 100) that colocalize with A1 molecules (n1 ¼ 100). The

FOV X is a 256 3 256 pixels square. We also generated

images with no noise. Synthetic images with different levels

of noise and spot colocalization were generated by using the

plugin Colocalization Simulator implemented in Icy. To ana-

lyze molecule colocalization, we implemented and used the

plugin Colocalization Studio that contains pixel-based meth-

ods that were introduced in section “Pixel-Based Methods,”

and Ripley-based analysis. For the object-based method, we

first extracted molecule spots with wavelet-based denoising

(see Material and Methods and Fig. 5).

First, concerning the statistical analysis of molecule

colocalization, we computed the Pearson and the Manders

correlation coefficients for each colocalization percentage and

experiment (M 5 10). We then tested the statistical signifi-

cance of the Pearson and Manders with spots randomization

(N 5 500 simulations). We did not use here ICQ analysis (27)

because simulated signal intensity was low, leading to an assy-

metric fluorescence intensity distribution (skewness> 0) and

many false positives with ICQ analysis (see subsection

“Statistical robustness”). For object-based methods, we com-

puted the zero-mean and unit-variance, Ripley-based statistics
~SðrÞ ¼ ðSðrÞ2lðrÞÞ=rðrÞ (see subsection IV B). We showed

that ~SðrÞ is normally distributed ~SðrÞ � N ð0; 1Þ (15), and its

critical quantiles q12aðrÞ under the null hypothesis of A2 ran-

dom distribution are thus equal to the quantile z12a of

Nð0; 1Þ. Thus, we computed the P values of molecule colocal-

ization for each experiment with formula P value

¼ cdf ðmax0�r�rmax
~SðrÞÞ, where cdf is the cumulative density

function of the standard normal law Nð0; 1Þ. We found that

colocalization was robustly assessed with both pixel- and

object-based methods, in every experimental condition (with

or without noise and pixel shift between colocalized spots;

see Fig. 5). Indeed, spot-randomization in pixel-based meth-

ods, and analytical formula of ~SðrÞ quantiles did not reject

the null hypothesis of molecule random distribution for

P2 ¼ 0%. In particular, Pearson and Manders P-values were

very close to each other in every experimental condition: p

value 	 0:560:1ðstandarderrorÞ with noise and P value 	
0:3560:08 without noise. Ripley-based analysis led to slightly

higher and more homogeneous P values: P value 	 0:660:03

with or without noise. In contrast, for P2 
 5% we found
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that Pearson, Manders and Ripley P-values are very close to

each other, and above 90% indicating spot colocalization

unambiguously.

Concerning the quantification analysis, we used Manders

overlap coefficients and ICCS analysis as pixel-based methods

(see subsection “Quantitative interpretation”), and we also

fitted object-based function ~SðrÞ with its parametric mean

E ~SðrÞjp2; a; b
� �

obtained from a Thomas process (see subsec-

tion “Colocalization Quantification”). We observed in Figure

5 that all methods under-estimated the simulated percentage

of colocalization (curves below the function y 5 x), but that

Ripley-based analysis was far more accurate (relative error <

10% in every experimental condition and simulated colocali-

zation percentage) than Manders and ICCS analysis. In partic-

ular, we observed that Manders and ICCS analysis were

significantly affected by image noise and shifting between

colocalized spots, relative errors between simulated and esti-

mated percentages of colocalization reaching 	 40250% for

Manders overlap coefficients, and 	 70% for ICCS analysis.

In contrast, Manders and ICCS analysis were much

more accurate in images with no noise (relative errors <10%

and <20% for Manders and ICCS analysis respectively). ICCS

sensitivity to noise has also been highlighted by Wu et al. (36).

Overall, these simulations demonstrate the importance of

Figure 5. Method comparison with synthetic images dual-color synthetic images with n1 ¼ n2 ¼ 100 spots are generated with a Poisson-

Gaussian model (see Material and Methods). Fluorescent spots are then automatically segmented with a wavelet-based algorithm (22).

Percentage of colocalization [mean 6 standard error (N 5 10 simulations)] estimated with pixel-based methods {Manders coefficient (9)

(solid blue line) and ICCS (35,36) (red blue line)} or object-based method [parametric fitting of the Ripley’s K function (solid black line)] is

compared with the simulated percentage of colocalization. The dashed black line represents the function y 5 x, corresponding to an ideal

matching between simulated and estimated percentages of colocalization. Statistical significance [mean P values 6 standard errors

(N 5 500 simulations)] of pixel-based methods {Manders (9) (solid blue line) and Pearson (10) (red blue line)} correlation coefficients are

obtained with spot randomization. In Ripley based method (solid black line), the statistical analysis is based on the comparison of the

maximum of the zero-mean and unit-variance, Ripley-based statistics ~SðrÞ with quantiles of the standard normal law (15). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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image denoising and deconvolution before using pixel-based

methods. Finally, we also found (data not shown) that, for no

spot colocalization P2 ¼ 0%, Manders overlap coefficients

increase almost linearly with spot density: M1 ¼ M2 ¼ 0:026

0 for n1 ¼ n2 ¼ 100 and M1 ¼ M2 ¼ 0:06260:005 for

n1 ¼ n2 ¼ 300. This highlights that Manders coefficients have

to be used consciensously in images with high spot density

due to fortuitous spot overlap that can lead to colocalization

overestimation.

We also used ~SðrÞ fitting to estimate the mean distance a

between colocalized molecules (see Fig. 6). For images with no

shift between colocalized spots, we found that a was slightly

overestimated to a 	 0:560:1 with noise and a 	 0:2560:1

without noise. These estimates were obtained when the per-

centage of colocalization was sufficiently high (>10%) to

ensure a robust estimation. Estimation overestimation is likely

due to molecule localization errors, which explains the bet-

ter accuracy of a estimation in images with no noise where

localization accuracy is increased (32). For images with 1

pixel-shift, a estimation was more precise a 	 1:0560:02,

which may be due to the fact that localization errors are

then small compared with molecule shift (32).

Biological Images

We analyzed the colocalization of two endocytic cargos,

Tf and IL-2R, with intracellular molecules that are impli-

cated in different endocytic pathways. Endocytosis is a key

receptor-mediated mechanism that regulates the entry of

signaling molecules and nutrients from the extra-cellular

medium into the cell, and the uptake of Tf and IL-2 regu-

late respectively the iron uptake (51) and the proliferation

of T cells during the cell mediated immunity (52,53). There

are several endocytic pathways, and the most well known is

mediated by the clathrin protein that forms coats around spe-

cific receptors, leading to membrane invagination and molecule

entry. Another important entry pathway is mediated by the cav-

eolin, and it is well known that Tf uses the clathrin pathway

(54), and not the caveolin pathway. In addition, it has been

shown that the internalization of IL-2R is clathrin-independent

(55,56). Here, we assess these different interactions by quantify-

ing the co-localization between the two endocytic cargos (Tf

and IL-2R) and the intracellular clathrin molecules, and

between the Tf and the intracellular caveolin molecule in Total

Internal Reflexion Fluorescence (TIRF) microscopy (see Fig. 7),

which restricts the observation plasma membrane proximity

(�150 nm depth).

Using pixel-based methods, we found a statistical colocali-

zation between Tf and clathrin (Pearson coefficient R ¼ 0:626

0:09 (n 5 3), P-value (pixel randomization) ¼ 160 and

ICQ ¼ 0:22160:05, P-value ¼ 160). This colocalization was

confirmed by Van Steensel’s shifting technique [implemented in

the Jacop plugin (8) in ImageJ (57)], which demonstrated that

R reached its maximum for a shift dx ¼ 0:6660:33 pixels. In

addition, we also found with pixel randomization, but not with

ICQ, which gave a false positive, that Tf and caveolin were not

colocalized (Pearson coefficient R ¼ 0:0560:02 (n 5 3), P-

value (randomization) ¼ 0:7660:13. Finally false positive

colocalization was found for IL-2R and clathrin with both pixel

randomization and ICQ sign test. This may be due to local

increase of (diffuse) signal intensities in some parts of the cells,

such as in the bottom left of the FOV represented in Figure 7.

The statistical analysis was more robust with object-

based method. Indeed, zero-mean and unit variance Ripley’s

K function ~SðrÞ reached a mean maximum value of

7.33 6 1.85 (P-value ¼ 160:0) for Tf and clathrin colocaliza-

tion. In contrast, ~SðrÞ maximum was only of 0.15 6 0.07 (P-

value ¼ 0:5660:03) and 0.34 60.17 (P value ¼ 0:6360:06)

for Tf/caveolin and IL-2R/clathrin, respectively.

Figure 6. Estimation of colocalization distance with Ripley-based analysis. Dual-color synthetic images with n1 ¼ n2 ¼ 100 spots are gen-

erated with a Poisson-Gaussian model (see Material and Methods). Fluorescent spots are then automatically segmented with a wavelet-

based algorithm ((22)). Colocalization distance is estimated [solid blue line, mean 6 standard error (N 5 10 simulations)] by fitting the Rip-

ley’s K function to a parametric Thomas model (see subsection IV C). The theoretical mean distance (solid red line) corresponds to the

pixel shift between the colocalized spots. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Concerning colocalization quantification, we found that,

due to high level of diffuse signal and molecule densities,

Manders’ coefficients were relatively elevated for noncolocal-

ized molecules: M1 ¼ 0:2260:01;M2 ¼ 0:2660:04 for Tf/cav-

eolin, and M1 ¼ 0:1860:11;M2 ¼ 0:1260:05 for IL-2R/

clathrin. In contrast, ICCS analysis confirmed that Tf and

caveolin do not colocalize (P1 ¼ 361%;P2 ¼ 963%), but

colocalization percentages were relatively high for IL-2R/cla-

thrin (P1 ¼ 563:7%; P2 ¼ 17614%). Parametric fit of Rip-

ley’s K function ~SðrÞ confirmed that neither Tf and caveolin

(P1 ¼ P2 ¼ 3:862:1%), nor IL-2R and clathrin (P1 ¼
3:361:8%; P2 ¼ 562:5%) colocalize. Regarding Tf and cla-

thrin, Manders correlation coefficients (M1 ¼ 0:7460:04;

M2 ¼ 0:4960:14), ICCS analysis (P1 ¼ 86619%; P2 ¼
4666:7%) and object-based method (P1 ¼ 5966:4%;

P2 ¼ 42610%) all corroborated a high level of colocalization.

Moreover, by fitting ~SðrÞ with Thomas process mean curve,

we found that colocalization distance between Tf and clathrin

was relatively small a ¼ 0:7860:26 pixels, corresponding to a

mean distance of 70 6 23 nm.

CONCLUSION

In this review, we have presented the main colocalization

methods, which are divided into pixel-based and object-

based. We have compared these different methods on syn-

thetic and biological images, and found that object-based

methods perform much better than pixel-based methods.

Indeed, statistical analysis in object-based methods is as

robust as in pixel-based methods, but does not require spot

randomization because the analytical quantiles of the Ripley’s

K function are known. We also found that object-based meth-

ods quantified more accurately the percentage of colocalized

molecules than pixel-based methods, and were not sensitive to

image noise and pixel-shift between colocalized molecules.

Finally, we showed that the mean distance between colocalized

molecules can be robustly inferred from the parametric fitting

of the Ripley’s K function in object-based methods.

Object-based methods apply when molecule signals are

spotty, making their individual detection and representation

possible as points in the delimited FOV. However, due to mol-

ecule density, intensity signal can become diffuse and mole-

cule individualization difficult and in this case pixel-based

methods are better-suited to measure signal correlations.

Moreover, in many biological applications, each intensity peak

corresponds to an unknown number of fluorescence mole-

cules. In this situation, pixel-based methods may perform bet-

ter because the linear relationship between pixel intensity and

number of molecules is preserved. In contrast, this relation-

ship is not valid in object-based methods due to preliminary

spot segmentation and representation as points. However, we

highlight that new single molecule techniques in fluorescence

microscopy allow to infer statistically the number of mole-

cules per fluorescent spot from peak intensity (58,59). Then,

weighting each point with the computed number of molecules

per peak would be a promising extension of Marked Point

Processes (41) in object-based methods to tackle this issue.

Finally, other important technical issues remain

unsolved in object-based methods. First, there is no analyti-

cal test of molecule colocalization that accounts globally for

the multidistance information SðriÞ; r1 < . . . ri < . . . < rN .

Indeed, second-order statistics (Nearest-Neighbor or Ripley’s

K functions) SðriÞ and SðrjÞ, for 1 � i 6¼ j � N, are corre-

lated random variables, and for now, their covariance can

only be accessed with Monte-Carlo simulations (14). A first

challenge would be to compute these co-variances analyti-

cally, and this would open the way to robust and rapid mul-

tidistance test of colocalization, providing the precise

probability that observed molecules are randomly distrib-

uted. Second, quantitative interpretation of S(r) depends on

model fitting, and is thus plagued with standard issues asso-

ciated with model embedding, like checking the robustness

of the fit and choosing a sufficiently general colocalization

model. Developing nonparametric methods for the quantita-

tive interpretation of S(r) variations thus constitutes as well

an important challenge.
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