ELYRA – 3D PALM Experimental PSF Multichannel Alignment

Renée Dalrymple Superresolution Applications Specialist October 2, 2015

Outline Workflow for 3D PALM on ELYRA P.1 or PS.1

1. Acquire PSF

Using (100 nm tetraspec) beads, 3D slider in and 4 µm range

All

-

M

•

1 (III) ZEN 2012	3 🗉 Light Path 🗸 Show All 🕑	Channels
<u>File View Acquisition Maintain Macro Tools Window Help</u>	WF SIM Laser WF LSM	
	Switch track every Frame Fast	Iracks Channels
Locate Acquisition Processing Maintain	Tracks Track1 + m	
Experiment Manager	Camera for all tracks	System System All Collapse
not defined 🕞 🖬 👼		
★ Smart Setup ✓ Show all Tools New	TV2 : sCMOS pco SIM TV1 : EM CCD Andor PALM	Track Contiguration not defined
	Track1	Track1 - Laser WF
Find Focus Set Exposure Live Continuous Snap	TV 2 TV 1	Lasers 405 488 561 642
✓ Z-Stack 401 Slices		🔺 488 nm — 5.0
Bleaching	SP SP	O FOV
Tile Scan 200 50 MB Positions 200 50 MB	lens 1 fx	Illumination mode EPI HILO TIRF 3D PAI
Regions Start Experiment		
# Setup Manager	TIRF Angle: 51.8°	TIRF Angle (*)
2 ∼ Acquisition Mode ✓ Show All	LBF 405/488/642	Collimator Camera ELYRA
Objective Plan-Apochromat 63x/1.40 Oil DIC M27	Pos: 340 3D	Save TIRF angle Reset Save collimator position(s) R
Scan Mode Frame		TV1 Exposure Time [ms] 1 50.00
Frame Size X 512 😴 X * Y Y 512 😴	Plan-Apochromat 63x/1.40 Oil DIC M27	EMCCD Gain
		HII O: recommended
Format 512 x 512 standard 💌	Stage Focus	time / gain typical: 50 ms / 100 gain
Trigger in Free run		
Averaging Free run		Z-Stack
Number 16 Bit V		
Method Mean -		see next slide
internal: recommended		sliner 401
free run: works	Off 1 %	z-stack settings: see next slide

1. Acquire PSF Z-stack definition

1. A typically suitable z-stack

Sparse beads, well separated lobes, in dynamic range

Rules of Thumb:

(1) approx. 10 - 80 beads in FOV

If fewer: poor statistics If too crowded: too many beads discarded

Remedy: Look for region in sample with appropriate density

(2) Exploit full dynamic range

Avoid too bright bead agglomerates in FOV

(3) Lobes well separated

Check oil (bubbles) Check 3D slider (Maintain tab) Check collimator position Vary HILO angle Use other objective

Outline Workflow for 3D PALM on ELYRA P.1 or PS.1

Processing Tab, Experimental PSF, Select

Automatically recognizes 3D-PALM situation

ZEINS

Bead selection display in preview

ZEN will only use well-behaved patterns:

White circles show which patterns are used Red circles show the discarded patterns

Discarding may be due to:

- (a) Overlap between patterns
- (b) SNR too low
- (c) Pattern too close to edge of image

Possibilities

(2) Inspect selection closer (by moving slider)

(3) Refine / Modify selection criteria (manual)

approx. 60 total approx. 20 selected

PSF extends over several microns

Outline Workflow for 3D PALM on ELYRA P.1 or PS.1

3. Create Localization Precision LUT

Localization Precision, Select Experimental PSF File, Apply.

Takes a few minutes!

3. Create Localization Precision LUT

After it is done: Just save.

Outline Workflow for 3D PALM on ELYRA P.1 or PS.1

4. Apply PSF File to images

Load sequence, assign proper Precision LUT and go.

- (1) Processing -> PALM
- (2) select image

(!) select LUT: this is your experimental PSF you just created

- (?) choose:
- (a) account for overlap (slow, more patterns)
- (b) discard overlap (fast, lots of discarding)
- (c) ignore overlap (more errors)

(3) 3D(automatically selected)

(4) Apply

Outline Workflow for 3D PALM on ELYRA P.1 or PS.1

Procedure:

Requirement: There must be fiducials present in the images of both channels.

- 1) After processing the raw data, if both channels were acquired together separate each color as its own PALM file.
 - a. Perform fiducial drift correction on each channel image
 - b. Write down the x, y, z positions of the common fiducials between each color
 - c. Render the images with the desired lateral and axial resolution. Be sure to check that both colors have exactly the same pixel size and z-plane thickness.
 - d. Convert each channel to an image
- 2) Combine the two "convert to image" files into one image using the Channel Alignment function
 - a. Select the two colors into "input 1" and "input 2", check "input 2" box, uncheck "Fit" and apply.
 - b. Note: the data should be simply combined and not shifted/corrected.
 - c. Note: The file size of the combined image must be less than 4 GB.

- 3) Use the Channel Alignment function again on the resulting image from step 2.
 - a. Select the result from step 2 above into "input 1"
 - b. Uncheck "input2", uncheck "fit"
 - c. Based on the x,y,z positions of the corrected fiducials you wrote in step **1b** above, calculate the average pixel shifts required for the channel alignment function:
 - i. Fiducial_A = (Xa, Ya, Za), and Fiducial_B = (Xb, Yb, Zb)
 - ii. Shift coefficient X = Xa-Xb / pixel size
 - iii. Shift coefficient Y = Ya-Yb / pixel size
 - iv. Shift coefficient Z = Za-Zb / zSliceThickness
 - d. Using only "LATERAL" alignment, manually enter the XYZ coefficients above into the channel alignment function.
 - i. Make sure the channels are properly matched (ID = 0 is matched to first channel, ID = 1 matched to second channel)
 - e. Hit Apply

Note 1: Consider the sign of the coefficients to make sure they are not flipped.

Note 2: The quality of the color fits depend critically on the quality of the fiducial drift correction. If you have poor fiducials or very few (2 or less), then the alignment may not be accurate.

1a. Drift Correct using Fiducials

Automatically detect fiducials:

PAL-Drift	PAL-Grouping PAL-Stat	istics PAL-Filter PA	L-Render
Correctio	on Type Fiducials	Ð	
Display	Drift Diagram	Drift Table	Fiducials Table
Show	🔲 Fiducials 🗹 Index	Zoom in	Correction -
Find Fidu	icials:		
Min On 1	īme		75 (%)
Off Gap	Ŋ		10 🕻 frames
Capture	Radius 1		— 2,0 🗘 pixel
		Apply	Remove

Camera pixel corresponds to 100nm (e.g. Capture Radius 2,0 = 200 nm)

Definition to auto-find fiducials. Fiducials can also be hand-picked

Hand-picking fiducials: see next slide

2

1a. Drift Correct using Fiducials

Hand select fiducials:

- 1. Select Fiducials Table
- 2. Click on (+) then hover over in image and click to select fiducial

1b. Write down x, y, z, positions of fiducials

	Use	Index	X [µm]	Y [µm]
			0.86	0.89
	- User defined -			Select all Clear all + -
IS	Display Graphics	✓ PAL-Drift PAL-Grou	uping PAL-Statistics PAL-Filter PAL-Render	2
8	Image: Image Indicator Image Indicator Reuse	100 Correction Type F 100 Display Drit Interpolation Show Fiduce Quick Color Setup Min On Time Off Gap op Positions Stage Off Gap	iducials ft Diagram Drift Table Fiducials Table tials ✓ Index Zoom in Correction 75 \$ (%) 10 \$ frar 2,0 \$ pixe Apply Remove	nes el

- 1. Select Fiducials Table
- 2. Write down the x, y, z positions of the common fiducials between each color

1c-d. Render and convert to images

- c. Render the images with the desired lateral and axial resolution. Be sure to check that both colors have exactly the same pixel size and z-plane thickness.
- d. Convert each channel to an image

2. Combine the two "convert to image" files

2) Combine the two "convert to image" files into one image using the Channel Alignment function

- a. Select the two colors into "input 1" and "input 2", check "input 2" box, uncheck "Fit" and apply.
- b. Note: the data should be simply combined and not shifted/corrected.
- c. Note: The file size of the combined image must be less than 4 GB. If not, reduce the number of pixels or size of image.

Uncheck "Fit"

3. Calculate shifts and align channels

- a. Select the result from step 2 above into "input 1"
- b. Uncheck "input2", uncheck "fit"
- c. Based on the x,y,z positions of the corrected fiducials you wrote in step
 1b above, calculate the average pixel shifts required for the channel alignment function:
 - i. Fiducial_A = (Xa, Ya, Za), and Fiducial_B = (Xb, Yb, Zb)
 - ii. Shift coefficient X = Xa-Xb / pixel size
 - iii. Shift coefficient Y = Ya-Yb / pixel size
 - iv. Shift coefficient Z = Za-Zb / zSliceThickness Uncheck "Fit"

Continued on next slide...

Select combined image with "Input 1"

Uncheck "Input 2"

- a. Using only "LATERAL" alignment, manually enter the XYZ coefficients into the channel alignment function.
 - Make sure the channels are properly matched (ID = 0 is matched to first channel, ID = 1 matched to second channel)
- b. Hit Apply

Note 1: Consider the sign of the coefficients to make sure they are not flipped.

Note 2: The quality of the color fits depend critically on the quality of the fiducial drift correction. If you have poor fiducials or very few (2 or less), then the alignment may not be accurate.

Choose "Lateral"

Fill in desired x, y, z shifts

We make it visible.